## Chase Joyner

802 Homework 4
April 3, 2017

## Problem 11.2

As used in the proof to Theorem 11.2b, show that

$$
\int_{0}^{\infty} t^{a} e^{-b t} d t=b^{-(a+1)} \Gamma(a+1) .
$$

Solution: Let $u=b t$. Then, by this change of variable we have

$$
\int_{0}^{\infty} t^{a} e^{-b t} d t=\frac{1}{b} \int_{0}^{\infty}\left(\frac{u}{b}\right)^{a} e^{-u} d u=b^{-(a+1)} \int_{0}^{\infty} u^{a+1-1} e^{-u} d u=b^{-(a+1)} \Gamma(a+1),
$$

where we obtain the last equality using the known Gamma function.

## Problem 11.3

(a) Show that $\left(\mathbf{I}+\mathbf{X V X} \mathbf{X}^{\prime}\right)^{-1}=\mathbf{I}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}+\mathbf{V}^{-1}\right)^{-1} \mathbf{X}^{\prime}$.

Solution: Notice that

$$
\begin{aligned}
& \left(\mathbf{I}+\mathbf{X V} \mathbf{X}^{\prime}\right) \times\left(\mathbf{I}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}+\mathbf{V}^{-1}\right)^{-1} \mathbf{X}^{\prime}\right) \\
& =\mathbf{I}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}+\mathbf{V}^{-1}\right)^{-1} \mathbf{X}^{\prime}+\mathbf{X V} \mathbf{X}^{\prime}-\mathbf{X} \mathbf{V} \mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}+\mathbf{V}^{-1}\right)^{-1} \mathbf{X}^{\prime} \\
& =\mathbf{I}+\mathbf{X V}\left[\mathbf{V}^{-1}\left(\mathbf{X}^{\prime} \mathbf{X}+\mathbf{V}^{-1}\right)^{-1}+\mathbf{I}-\mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}+\mathbf{V}^{-1}\right)^{-1}\right] \mathbf{X}^{\prime} \\
& =\mathbf{I}+\mathbf{X V}\left[\mathbf{I}-\left(\mathbf{V}^{-1}+\mathbf{X}^{\prime} \mathbf{X}\right)\left(\mathbf{X}^{\prime} \mathbf{X}+\mathbf{V}^{-1}\right)^{-1}\right] \mathbf{X}^{\prime} \\
& =\mathbf{I}+\mathbf{X V}[\mathbf{I}-\mathbf{I}] \mathbf{X}^{\prime}=\mathbf{I} .
\end{aligned}
$$

The exact argument above can also be used to show that

$$
\left(\mathbf{I}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}+\mathbf{V}^{-1}\right)^{-1} \mathbf{X}^{\prime}\right) \times\left(\mathbf{I}+\mathbf{X} \mathbf{V} \mathbf{X}^{\prime}\right)=\mathbf{I} .
$$

This shows the result.
(b) Show that $\left(\mathbf{I}+\mathbf{X V X} \mathbf{X}^{\prime}\right)^{-1} \mathbf{X}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}+\mathbf{V}^{-1}\right)^{-1} \mathbf{V}^{-1}$.

Solution: Considering the difference and part (a), we find

$$
\begin{aligned}
& \left(\mathbf{I}+\mathbf{X V X} \mathbf{X}^{\prime}\right)^{-1} \mathbf{X}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}+\mathbf{V}^{-1}\right)^{-1} \mathbf{V}^{-1} \\
& =\left[\mathbf{I}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}+\mathbf{V}^{-1}\right)^{-1} \mathbf{X}^{\prime}\right] \mathbf{X}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}+\mathbf{V}^{-1}\right)^{-1} \mathbf{V}^{-1} \\
& =\mathbf{X}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}+\mathbf{V}^{-1}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}+\mathbf{V}^{-1}\right)^{-1} \mathbf{V}^{-1} \\
& =\mathbf{X}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}+\mathbf{V}^{-1}\right)^{-1}\left(\mathbf{X}^{\prime} \mathbf{X}+\mathbf{V}^{-1}\right) \\
& =\mathbf{X}-\mathbf{X}=\mathbf{0}
\end{aligned}
$$

which shows the result.
(c) Show that $\mathbf{V}^{-1}-\mathbf{V}^{-1}\left(\mathbf{X}^{\prime} \mathbf{X}+\mathbf{V}^{-1}\right)^{-1} \mathbf{V}^{-1}=\mathbf{X}^{\prime}\left(\mathbf{I}+\mathbf{X} \mathbf{V} X^{\prime}\right)^{-1} \mathbf{X}$.

Solution: By equation (2.54) in the text, we obtain

$$
\begin{aligned}
& \mathbf{V}^{-1}-\mathbf{V}^{-1}\left(\mathbf{X}^{\prime} \mathbf{X}+\mathbf{V}^{-1}\right)^{-1} \mathbf{V}^{-1} \\
& =\left[\mathbf{V}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{\prime} \mathbf{X}\right)\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]^{-1} \\
& =\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}+\mathbf{V}\right]^{-1}
\end{aligned}
$$

Now, by (2.54) again,

$$
\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}+\mathbf{V}\right]^{-1}=\mathbf{X}^{\prime} \mathbf{X}-\mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}+\mathbf{V}^{-1}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X}
$$

and therefore we have that

$$
\begin{aligned}
& \mathbf{V}^{-1}-\mathbf{V}^{-1}\left(\mathbf{X}^{\prime} \mathbf{X}+\mathbf{V}^{-1}\right)^{-1} \mathbf{V}^{-1} \\
& =\mathbf{X}^{\prime} \mathbf{X}-\mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}+\mathbf{V}^{-1}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X} \\
& =\mathbf{X}^{\prime}\left[\mathbf{I}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}+\mathbf{V}^{-1}\right)^{-1} \mathbf{X}^{\prime}\right] \mathbf{X} \\
& =\mathbf{X}^{\prime}\left(\mathbf{I}+\mathbf{X} \mathbf{V} \mathbf{X}^{\prime}\right)^{-1} \mathbf{X}
\end{aligned}
$$

where the last equality is from part (a).

## Problem 5.20

(a) We can see that the $t$ distribution is a mixture of normals using the following argument:

$$
P\left(T_{\nu} \leq t\right)=P\left(\frac{Z}{\sqrt{\chi_{\nu}^{2} / \nu}} \leq t\right)=\int_{0}^{\infty} P(Z \leq t \sqrt{x} / \sqrt{\nu}) P\left(\chi_{\nu}^{2}=x\right) d x
$$

where $T_{\nu}$ is a $t$ random variable with $\nu$ degrees of freedom. Using the Fundamental Theorem of Calculus and interpreting $P\left(\chi_{\nu}^{2}=x\right)$ as a pdf, we obtain

$$
f_{T_{\nu}}(t)=\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-t^{2} x / 2 \nu} \frac{\sqrt{x}}{\sqrt{\nu}} \frac{1}{\Gamma(\nu / 2) 2^{\nu / 2}} x^{\nu / 2-1} e^{-x / 2} d x
$$

a scale mixture of normals. Verify this formula by direct integration.
Solution: Notice that

$$
\left.\begin{array}{l}
\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-t^{2} x / 2 \nu} \frac{\sqrt{x}}{\sqrt{\nu}} \frac{1}{\Gamma(\nu / 2) 2^{\nu / 2}} x^{\nu / 2+1 / 2-1} e^{-x / 2} d x \\
=\frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{\nu} \Gamma(\nu / 2) 2^{\nu / 2}} \int_{0}^{\infty} x^{(\nu+1) / 2-1} e^{-t^{2} x / 2 \nu-x / 2} d x \\
=\frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{\nu} \Gamma(\nu / 2) 2^{\nu / 2}} \int_{0}^{\infty} x^{(\nu+1) / 2-1} e^{-x\left(t^{2} / 2 \nu+1 / 2\right)} d x \\
=\frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{\nu} \Gamma\left((\nu / 2) 2^{\nu / 2}\right.} \cdot \Gamma((\nu+1) / 2) \frac{1}{\left(t^{2} / 2 \nu+1 / 2\right)^{(\nu+1) / 2}} \\
=\frac{1}{\sqrt{2 \pi}} \frac{\Gamma((\nu+1) / 2)}{\sqrt{\nu}}\left(\frac { 2 \nu } { \Gamma ( ( \nu / 2 ) 2 ^ { \nu / 2 } } \left(t^{2}+\nu\right.\right.
\end{array}\right)^{(\nu+1) / 2}{ }_{=\frac{1}{\sqrt{\nu \pi}} \frac{\Gamma((\nu+1) / 2)}{\Gamma\left((\nu / 2) 2^{\nu / 2}\right.}\left(\frac{1}{t^{2}+\nu}\right)^{(\nu+1) / 2}}
$$

which is the pdf of a $t_{\nu}$ random variable. This shows the result.
(b) A similar formula holds for the $F$ distribution; that is, it can be written as a mixture of chi squareds. If $F_{1, \nu}$ is an $F$ random variable with 1 and $\nu$ degrees of freedom, then we can write

$$
P\left(F_{1, \nu} \leq \nu t\right)=\int_{0}^{\infty} P\left(\chi_{1}^{2} \leq t y\right) f_{\nu}(y) d y
$$

where $f_{\nu}(y)$ is a $\chi_{\nu}^{2}$ pdf. Use the Fundamental Theorem of Calculus to obtain an integral expression for the pdf of $F_{1, \nu}$, and show that the integral equals the pdf.

Solution: Taking the derivative of both sides and interchanging the derivative with the
integral, we have

$$
\begin{aligned}
\nu f_{1, \nu}(\nu t) & =\frac{d}{d t} \int_{0}^{\infty} P\left(\chi_{1}^{2} \leq t y\right) f_{\nu}(y) d y=\int_{0}^{\infty} \frac{d}{d t} P\left(\chi_{1}^{2} \leq t y\right) f_{\nu}(y) d y \\
& =\int_{0}^{\infty} y f_{1}(t y) f_{\nu}(y) d y \\
& =\int_{0}^{\infty} y \frac{1}{\sqrt{2} \Gamma(1 / 2)}(t y)^{-1 / 2} e^{-t y / 2} \cdot \frac{1}{2^{\nu / 2} \Gamma(\nu / 2)} y^{\nu / 2-1} e^{-y / 2} d y \\
& =\frac{t^{-1 / 2}}{2^{(\nu+1) / 2} \Gamma(1 / 2) \Gamma(\nu / 2)} \int_{0}^{\infty} y^{(\nu+1) / 2-1} e^{-(t+1) y / 2} d y \\
& =\frac{t^{-1 / 2}}{2^{(\nu+1) / 2} \Gamma(1 / 2) \Gamma(\nu / 2)} \cdot \frac{\Gamma((\nu+1) / 2)}{[(t+1) / 2]^{(\nu+1) / 2}} \\
& =\frac{t^{-1 / 2}}{\Gamma(1 / 2) \Gamma(\nu / 2)} \cdot \frac{\Gamma((\nu+1) / 2)}{(t+1)^{(\nu+1) / 2}} .
\end{aligned}
$$

This implies that

$$
f_{1, \nu}(\nu t)=\frac{t^{-1 / 2}}{\nu \Gamma(1 / 2) \Gamma(\nu / 2)} \cdot \frac{\Gamma((\nu+1) / 2)}{(t+1)^{(\nu+1) / 2}} .
$$

For clarity, consider $x=\nu t$ and so the above becomes

$$
\begin{aligned}
f_{1, \nu}(\nu t) & =\frac{\Gamma((\nu+1) / 2)}{\nu \Gamma(1 / 2) \Gamma(\nu / 2)} \frac{(x / \nu)^{-1 / 2}}{(1+x / \nu)^{(\nu+1) / 2}} \\
& =\frac{\Gamma((\nu+1) / 2) \nu^{\nu / 2}}{\Gamma(1 / 2) \Gamma(\nu / 2)} \frac{x^{1 / 2-1}}{(\nu+x)^{(1+\nu) / 2}}
\end{aligned}
$$

and the RHS above is indeed the pdf of an $F_{1, \nu}$ random variable.

